Monatshefte für Chemie 117, 793-797 (1986)

Comparison of the Crystal Structures of Sodium Orthosilicate, Na₄SiO₄, and Sodium Orthogermanate, Na₄GeO₄

Short Communication

Werner H. Baur^{a,*}, Erich Halwax^b, and Horst Völlenkle^b

^a Department of Geological Sciences, University of Illinois at Chicago, P.O. Box 4348, Chicago, IL 60680, U.S.A.

^b Institut für Mineralogie, Kristallographie und Strukturchemie, Technische Universität Wien, A-1060 Wien, Österreich

(Received 17 February 1986. Accepted 4 March 1986)

The crystal structures of Na_4SiO_4 and Na_4GeO_4 are isotypic, despite a difference in coordination numbers: in Na_4SiO_4 only one of the four symmetrically independent sodium atoms is four coordinated, in Na_4GeO_4 two of them are.

(Keywords Sodium orthosilicate; Sodium orthogermanate; Coordination numbers; Reduced cells)

Vergleich der Kristallstrukturen von Natriumorthosilikat, Na₄SiO₄, und Natriumorthogermanat, Na₄GeO₄ (Kurze Mitteilung)

Die Kristallstrukturen von Na₄SiO₄ und Na₄GeO₄ sind isotyp, trotz eines Unterschiedes in den Koordinationszahlen: im Na₄SiO₄ ist nur eines der symmetrisch unabhängigen Natriumatome vierfach koordiniert, während es im Na₄GeO₄ derer zwei sind.

The crystal structure of Na_4GeO_4 has been determined recently [1] and found to be isotypic with the known crystal structures of Na_4CoO_4 , K_4GeO_4 , K_4SnO_4 and K_4PbO_4 . *Halwax* and *Völlenkle* [1] assumed on the basis of a cell constant determination of Na_4SiO_4 [2] that it is isostructural with Na_4GeO_4 . Actually the crystal structure of Na_4SiO_4 has been determined with high precision five years ago [3].

The proposed transformation [1] of the cell constants as determined by *Kautz* et al. [2] does not conform to the setting used for Na_4GeO_4 , nor does it result in a reduced cell [4] (Tab. 1). *Barker* and *Gadd* [3] used the

Compound	Cell constants		Transformation matrix	
	[Å] [°]			
Na ₄ SiO ₄ [2] (original)	5.58 6.20 8.51	102.95 95.9 123.6		
Na_4SiO_4 [2] (transformed to reduced cell)	5.58 5.59 8.38	71.9 81.3 67.4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Na ₄ SiO ₄ [3] (original)	5.576 6.191 8.507	103.13 95.50 123.72		
Na_4SiO_4 [3] (transformed to reduced cell)	5.576 5.576 8.393	80.92 71.84 67.44	$\begin{array}{cccc} -1 & -1 & 0 \\ -1 & 0 & 0 \\ -1 & -1 & -1 \end{array}$	
Na ₄ GeO ₄ [1] (original)	5.688 5.701 8.583	81.32 71.50 67.95		

Table 1. Cell constants of Na₄SiO₄ and Na₄GeO₄, as originally reported and as transformed. The cell constants are given in the sequences a, b, c and α , β , γ

previously established setting [2] for their structure determination of Na₄SiO₄. However, the reduced cell for their determination of the unit cell is not identical in its orientation to the reduced cell based on the older work (compare the exchange of α and β , and of the rows in their transformation matrices, in the two reduced cells in Tab. 1). The reason for this is that the two shortest lattice vectors in Na₄SiO₄ are essentially equal in length. The orientation of the reduced cell is consequently different depending on which of the vectors is accidentally found to be shorter in a given experiment. The near equality of *a* and *b* does not mean that the actual symmetry of Na₄SiO₄ is higher than originally assumed [5]. The Niggli matrix obtained from the reduced cell corresponds to lattice character case 31 [4] and does not show any specializations indicating higher symmetry. Therefore the lattice on which the structure is based is definitely triclinic.

Barker and Gadd [3] determined the crystal structure of Na₄SiO₄ from 1267 symmetrically independent intensities and refined it to R = 0.054 and $R_w = 0.063$. For the cell constants see Table 1, the space group is P I and the cell contains two formula units: Z = 2. The calculated density is $D_x = 2.672 \text{ g cm}^{-3}$, and not 1.336 g cm^{-3} as stated in the original publication.

Table 2. Positional coordinates of Na_4SiO_4 (first row of each atom entry) and
Na ₄ GeO ₄ (second row) with estimated standard deviations of the least significant
digit in parentheses. The values for Na_4SiO_4 are transformed to correspond with the
coordinates of Na4GeO4. The numbering used by Barker and Gadd [3] is included
for purposes of identification. The Δ are the deviations [Å] between correspond-
ing atoms in Na ₄ SiO ₄ and Na ₄ GeO ₄ when referred to a unit cell with its cell
dimensions taken as an average of both compounds

Atom	No. [3]	<i>x</i>	У	Z	Δ
Na(1) Na(1)	3	0.4545 (2) 0.449 (1)	0.7319(2) 0.738(1)	0.1113 (1) 0.1053 (6)	0.07
Na(2) Na(2)	1	0.7351 (2) 0.740 (1)	0.2565(2) 0.258(1)	0.4803 (1) 0.4845 (6)	0.06
Na(3) Na(3)	4	0.9038(2) 0.895(1)	0.7640(2) 0.770(1)	0.3318(1) 0.3226(6)	0.10
Na(4) Na(4)	2	0.9828(2) 0.981(1)	0.2323 (2) 0.236 (1)	0.0617 (2) 0.0635 (6)	0.03
Si Ge		0.3438(1) 0.3436(2)	0.2252(1) 0.2217(2)	0.2521 (1) 0.2550 (1)	0.03
O(1) O(1)	1	0.1564 (3) 0.140 (2)	0.0428 (3) 0.036 (2)	0.3074(2) 0.306(1)	0.12
O(2) O(2)	4	0.2093 (3) 0.204 (2)	0.4625(3) 0.472(2)	0.1259 (2) 0.124 (1)	0.05
O(3) O(3)	3	0.3473 (3) 0.355 (2)	0.3558 (4) 0.352 (2)	0.4116(2) 0.424(1)	0.12
O(4) O(4)	2	0.6498 (3) 0.664 (2)	0.0443 (3) 0.033 (2)	0.1486(2) 0.139(1)	0.10

The positional coordinates found for Na₄SiO₄ and Na₄GeO₄ agree very well with eath other (Tab. 2). Judging from these parameters there seems to be no doubt about the isotypism of the two structures. Also the individual and mean bond lengths around sodium atoms Na(1), Na(2) and Na(4) agree nicely with each other in both structures (Tab. 3). However, atom Na(3) is clearly four coordinated in Na₄GeO₄, but is in a distorted five coordination in Na₄SiO₄. The Na(3)—O(3) distance measures 3.07 Å in Na₄GeO₄, but only 2.824 Å in Na₄SiO₄. Brunner [6] has proposed to use gaps in the distance spectrum as delimiters in the count of coordinating contacts around a cation. According to his criterion O(3), at a distance of 2.824 Å from Na(3), is coordinated to this sodium atom. The fact that the mean distance Na(3)—O is then longer than for the other five coordinated sodium atoms in Na₄SiO₄ and Na₄GeO₄ is not a counter argument. The mean distances to oxygen atoms surrounding sodium atoms show usually

W. H. Baur et al.:

Table 3. Sodium-oxygen distances $[Å]$ in Na ₄ SiO ₄ [3] and Na ₄ GeO ₄ [1]. The				
distances listed below the mean are in each case for the next neighbors outside the				
coordination polyhedron. Estimated standard deviations in units of the least				
significant digit in parentheses. All bond lengths are recalculated from positional				
coordinates and unit cell parameters given in the original papers				

	Na_4SiO_4	Na ₄ GeO ₄		Na ₄ SiO ₄	Na ₄ GeO ₄
Na(1) - O(2) Na(1) - O(1) Na(1) - O(2) Na(1) - O(2)	2.334 (2) 2.337 (2) 2.357 (3)	2.382 (12) 2.380 (12) 2.375 (18)	Na(2) - O(3) Na(2) - O(1) Na(2) - O(3) Na(2) - O(1)	2.252 (4) 2.299 (2) 2.303 (2)	2.260 (20) 2.310 (15) 2.282 (13)
Na(1)—O(4) Na(1)—O(4) mean Na(1)—O(3)	2.455 (2) 2.482 (3) 2.393 3.076 (2)	2.432 (12) 2.515 (18) 2.417 3.279 (11)	Na(2)—O(1) mean Na(2)—O(4) Na(2)—O(3)	2.306 (3) 2.290 3.417 (2)	2.349 (12) 2.300 3.601 (20)
Na(3)—O(3) Na(3)—O(2) Na(3)—O(4) Na(3)—O(1) Na(3)—O(3) mean Na(3)—O(1) Na(3)—O(3)	2.330 (2) 2.366 (2) 2.390 (2) 2.417 (3) 2.824 (3) 2.465 3.250 (2)	2.358 (12) 2.369 (12) 2.362 (14) 2.379 (18) 2.367 3.069 (16)	$\begin{array}{c} Na(4) - O(2) \\ Na(4) - O(2) \\ Na(4) - O(4) \\ Na(4) - O(4) \\ Na(4) - O(1) \\ mean \\ Na(4) - O(4) \\ Na(4) - O(3) \end{array}$	2.309 (2) 2.328 (3) 2.342 (3) 2.423 (2) 2.465 (2) 2.373 3.731 (3)	2.328 (13) 2.366 (18) 2.368 (19) 2.388 (13) 2.481 (13) 2.386

much variability, as can be seen in Na₂MgSiO₄ [7], where the mean Na— O distances (in tetrahedral four coordination) range from 2.30 to 2.38 Å. Thus in Na₄SiO₄ one sodium atom is four coordinated, while the remaining three are five coordinated. In Na₄GeO₄ on the other hand, two sodium atoms are four coordinated and two are five coordinated. Despite this difference in coordination numbers, the overall similarity between Na₄SiO₄ and Na₄GeO₄ is so pronounced that they should be held to be isotypic. The distance from an atom in Na₄SiO₄ to its corresponding atom in Na₄GeO₄ does not exceed 0.12 Å and is on average 0.08 Å (when calculated in a unit cell with the cell dimensions taken as the arithmetic mean of the cell constants of Na₄SiO₄ and Na₄GeO₄, see Table 2). Both, Na(3) and O(3), are atoms with large relative displacements, thus causing the change in the coordination number of Na(3).

Acknowledgements

W. H. B. thanks the Computer Center of the University of Illinois at Chicago for computer time and the National Science Foundation, Solid State Chemistry Section, for a grant (DMR-80 19017).

References

- [1] Halwax E, Völlenkle H (1985) Monatsh Chem 116: 1367

- [1] Halwax E, Vollenkie H (1985) Monatsh Chem 110, 1507
 [2] Kautz K, Müller G, Schneider W (1970) Glastechn Ber 43: 377
 [3] Barker MG, Gadd PG (1981) J Chem Res (M) 3446
 [4] International Tables for Crystallography (1983) vol A Dordrecht, Reidel D
 [5] Baur WH, Tillmanns E (1986) Acta Crystallogr B42 (in press)

- [6] Brunner GO (1977) Acta Crystallogr A 33: 226
 [7] Baur WH, Ohta T, Shannon RD (1981) Acta Crystallogr B 37: 1483